CERTAIN PROBLEMS RELATING TO THE REGULAR

THERMAL REGIME OF BICOMPONENT MATERIALS

A, G. Shifel'bain

UDC 536.21

We have derived equations — convenient for practical application — describing the regular
thermal regime of a plate, a sphere, and a cylinder, with a finite value for the heat-transfer
coefficient when the heat capacity of the core is greater than or equal to the heat capacity

of the shell.

With onset of a regular thermal regime, the temperature of a body is described by the first term in

the Fourier series

T = U exp (— mit), (1)

where U is a function of the coordinates and of the initial conditions; the coefficient m or, as it is usually
known, the cooling rate, is a function of the thermophysical and geometric parameters of the system.,

Kondrat’ev has demonstrated that for a thermally insulated metal core the equation which relates the
cooling rate with the system parameters can be derived in two ways. The first method is associated with
the determination of the least of the eigenvalues for the Fourier series describing the temperature regime
of the system, and it is a more rigorous method, although the equations derived by this means cannot always
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Fig.1. The dimensionless time for the onset
of the regular thermal regime as a function
of the relationship between the heat capacities
of the metal and the thermal insulation: 1) T,
= 03 2) Tip = Tpy (1 —x/8); 3) Tip = Tiy.

be simplified. The second method is based on the de-
termination of the heat balances. The equations for
the regular thermal regime of bicomponent plates and
spheres when o = « were derived in [1-3].

We consider the regular thermal regime of a
plate, a sphere, a cylinder, and bodies of more com-
plex shape, given a finite value for the heat-transfer
coefficient when the heat capacity of the core is greater
than or equal to the heat capacity of the shell. The
equations for the plate and the sphere have been de-
rived in two ways, which demonstrates that the method
of heat balances is sufficiently accurate; the equation
for the cylinder has been derived exclusively by the
second method,

1. The First Method. The Symmetric Plate,
We consider the temperature field of a shell and we
make provision for the effect of the metallic core only
in the boundary conditions. The particular solution
of the heat-conduction equation has the form

T = (Acospx -+ Bsin px) exp (— mt), (2)

where
m = pla. (3)

The boundary conditions are the following: when x =0
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Fig.2. A bicomponent plate: 1) metallic core; 2) thermal-insulation
shell; 3) elemental layer of thermal insulation; 4) ambient medium.

Fig.3. Form factors for the sphere and the cylinder as functions of
the ratio between the outside and the inside radii of the shell: 1) k¥;
2) ko: 3) kg; 4) ks.

there is ideal contact between the heat insulation and the metal; when x = § the transfer of heat taking place
at the outside surface follows Newton's law [4]:

aT c* or*
A——] == R 4
—A _a_T_ = qT Ix"—-‘ﬁ (5)
ax x=0

(let us examine the cooling process; the temperature of the ambient medium will serve as our coordinate
origin). Eliminating A and B from (2)-(5), we find the equation for the determination of the eigenvalues of
pe:

tg b
S
m — -1 6)
1— £ tgps

Since the regular regime is governed by the least root of Eq. (6), the series expansion of tan u§ in powers

of u6 and retaining two terms of the expansion (we assume that s < 1), after transformations we derive the
equation

A A R'R®
mC*(R* + R*) + mC [ kR" + R* —k* 8 =1, @
: R+ R+ o R
where
A A ) o . 1
— = = = \
R*=R} 5 R* =R} = (8)

are the thermal resistances of the heat insulation and of the heat transfer at the external surface;
1 . 1
k=kP=—3—, k*=kp=§— 9)

are the numerical coefficients which we will refer to as form factors.

The equation for the determination of the eigenvalues of a sphere are written in the form

(&_LC"‘_*:_+1:_) 5
A28y " 8 mC*8ry ) (_2»_ _1) = V97 Sry L) (10)
ar, rs Shr, ar, tgué
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After simplication, given that ué < 1, we find Eq. (7) in which the thermal resistances and the form factors
are written as follows:

_ 1
RNV =Ri=2""t; R =R =, 1
S Moy, P o] ()
r2

L E— 12
k =k e (12)

P N
. : (13)
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We have to evaluate the area of application for Eq. (7). First of all, this equation is valid only after
the onset of the regular thermal regime. It ig possible to evaluate the time for the onset of the regular re-
gime under various initial conditions from the theoretical curves of a symmetric plate when o = =, as
shown in Fig. 1. Moreover, in the derivation of (7) we assumed that 46 < 1. When o = <, we find that this
condition corresponds to C/C* < 1. For any finite value of o, the conditions C/C* < 1 are even more suf-
ficient, because the thermal process is retarded in this case, which corresponds to the least values of .,

The accuracy of Eq. (7) for a plate can be evaluated by comparing it with the original equation (5).
When o = = these equations assume the form:
ud tg ud =1, (5%
mC
— R —R=1 7*
S t5 5 (7%
The value of C/C* =1 m calculated from (7*) differs from the m calculated from (5*) by 1.4%; with C/C*
= 0.5, this difference is only 0.5%.

2. The Second Method. The Symmetric Plate (Fig.2). Let us isolate an elemental layer at a distance
x from the core. The heat flow through this layer is equal to the total heat flow {rom the cooling core and
from the thermal insulation situated between the core and the elemental layer:

aT*

Having divided the right- and left-hand members of (14) by AS and integrating over the entire shell thick-
ness, we derive the equation

S X+ j S T pS dt = —(T* —T). (15)
: ,

We assume that the relationship between the shell temperature and the coordinates remains the same as
in the steady-state regime. This assumption is the more valid, the smaller the heat capacity of the shell
relative to the heat capacity of the core:

T#T*—(T*~To)6i. (16)
We determine T from the equation for theheat flow at the boundary between the thermal insulation and the
ambient medium:

BT*

*

+§ —— ¢pSdx = —aT,S. (17)

We determine the terms containing 8T,/ 9t by differentiating the relationship

To R®

TR R 19

which is a rigorous equality only in the steady-state regime or when the shell heat capacity can be neglected.
After integration of (15), considering (16)~(18), and denoting
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TABLE 1, Values of U(C/C* as a Function of C/Cx* for Various
Initial Shell Temperatures

U(c/Cc* u(c/cry
c ; c
o . * * o * ¥ *
e | or=1t | T=0 Ti‘,:rm(x— 5 ) ¢ T=Th | T=0 Tin=Tm(x._ %) )
4 1,23 0,37 0,88 0,5 1,05 0,85 0,97
2 1,18 0,56 0,92 0,3 1,03 0,91 0,98
1,5 1,10 0,63 0,93 0,2 1,02 0,94 0,99
1 1,09 0,73 0,95 0,1 1,01 0,97 0,99
0,7 1,07 0,80 0,97 0,088 1,01 0,98 1,00
Fx is the distance form the core,
oT*
— ———/T* =m, (19)
ot
we derive the equation
A pa
mC*u?4—R%—ch(kR*+1P—~k*Rf:wa:= (20)

where R, R®, k,and k* are determined from Eqgs. (8) and (9). Equation (20) differs from (7) — derived by
the first method — only in terms of the second order of smallness with respect to C/C*. Similar equations
are derived for a sphere and a cylinder, but for the sphere R?, RY k, and k* are determined from (11)-(13),
while for the cylinder

In __fL
1
- y T 1)
R*=R. A2mz R* =R a2srye
1 r r?
b= ko = — ! — (22)
r2—r
2 2 (r2—r3)In Tz 2T
ry . n
-2 2
Boke i L (23)
21n® T2 (rz2—r31n L 27N
r 7y

The constants k and k* for the sphere and the cylinder are shown graphically in Fig.3. With an increase in
the sphere and cylinder radii for a constant shell thickness the sphere and cylinder equations change into
the equation for the plate.

3. The Regular Thermal Regime for Materials of Complex Shape. In certain cases the equation for
the regular thermal regime of materials of complex shape, made up of a core in a thermal-insulation sheil,
can be set up on the basis of the equations applicable to the simplest of configurations. Let us consider the
special case of a cylinder which terminates in hemispheres. Let us divide this eylinder into three parts: the
upper hemisphere, the cylinder, and the lower hemisphere; these can be regarded as adiabatically isolated
parts of bicomponent spheres and an unbounded cylinder (within the metal the location of the boundary of
separation is quite arbitrary). Let us write the equation of the regular thermal regime for each of the parts,
bearing in mind that the corresponding form factors remain without change, while the thermal resistances
of the hemispheres are half those of the corresponding spheres:

mCiR,+ mC,R; = 1,
mzC;Rz + mzczR; = 1,
m3C;R3 + m3C3R; = 1.

Retaining m,C¥, m,C5 and m;C¥, respectively, in the first terms, summing these equations, and bearing in
mind that m; = m, = my = m and C}¥ + C5 + C¥ = C*, we obtain

(24)

me, Rl L

R} R: 1 1
R, R TR TR

* IS 2 25
mC* 4 mC, R, + mC, R, (25)

If the upper and the lower hemispheres are identical, Eq. (25) is somewhat simplified. In analogous fashion
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- we can compile the equation for the regular thermal regime
7 of a nonsymmetric plate, as derived by Kondrat'ev in a more
é; I"\“"\\ complex procedure. The comparative simplicity of these
A\ \\ cases is explained by the fact that these configurations are
% ‘\‘e\\k ‘\.L\ easily divided into their component parts of the simplest
i\ \\ \{7‘ shape. In other cases such as, for example, a cylinder with
% (A N7 \\ flat bottoms, it becomes necessary to take the edge effect
\\ \\ \\\\ into consideration. The correction factor for the edge effect
92—\ y ‘\i\ ~—] - can be introduced into the corresponding thermal resistance.
\\§§: 4. Cooling (Heating) Estimates for Bicomponent Mate~
) 7 -4\" r a“;/hz atfe? rials, Based on the Equations for the Regular Thermal Re-
gime. In actual practice, we frequently find it necessary to
Fig.4. Comparison of the working data for calculate the temperature of the metallic heat-insulation
the determination of the temperature of the core in connection with processes of spontaneous cooling or
thermally insulated metal reservoirs as a heating. Since we have assumed that the core temperature
function of time. The solid lines show the is independent of the coordinates, following the onset of the
result of a rigorous solution 5], and the regular thermal regime, the core temperature is given by
points have been plotted according to cal~
culations. with (27). The numerals af the T = T'U ( Cc ) exp (—m), (26)
curves give the values of C*/C. c*

whose right-hand member is the first term of the Fourier series describing the temperature regime of the
system.

We know the cooling of a core when the heat capacity of the shell is small in comparison of the heat
capacity of the core follows the law

T* = Tiexp(—mt), 27)

where m is given from the equations for the regular thermal regime.

Is it impossible to use (27) to estimate the core temperature even in those cases in which the heat
capacity of the shell is comparable to that of the core? It develops that the accuracy of the calculations de-
pends in great measure on the initial condition; and since we assume that the initial core temperature in
all cases is equal to T;‘n, and that the temperature of the ambient medium is equal to zero, the initial con-
ditions are represented by the temperature of the insulation material prior to the onset of cooling. Table 1
shows the values for U(C/ C*) for a plate when o = « for three different initial conditions.

It follows from Table 1 that for the purpose of tentative temperature calculations the most favorable
case is the one in which the temperature distribution in the insulation is kept steady prior to the onset of
cooling. This is also confirmed in Fig.4 which shows a comparison of the calculation results for the heat-
ing of reservoirs for cryogenic liquids, these calculations based on the rigorous solution of (4) and (27).
However, of greatest interest are the cases for which mathematical solution of the problem is difficult.

NOTATION
m is the cooling rate;
t is the time;
T* is the core temperature;
T;‘n is the core temperature prior to the onset of cooling;
T is the shell temperature;
Tin is the shell temperature prior to the onset of cooling; .
T is the shell temperature at the boundary with the ambient medium;
Cx is the heat capacity of the core;
C ig the heat capacity of the shell;
S is the shell thickness;
Ty, Ty are, respectively, the inside and outside radii of the shell;
c,P, A, a are the characteristics of the thermal insulation;
o is the heat-transfer coefficient;
S is the area separating the metal and the thermal insulation;
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RA, RY are, respectively, the thermal resistances of the thermal insulation and of
the heat transfer;

R =R+ RO,
R* = kR* + RY —RMR®/ (RN + R
k, k* are the form factors,

Subscripts

p denotes the plate;
s denotes the sphere;
c denotes the cylinder.
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